Developmental Disorders of Oral Cavity

Prof. Shaleen Chandra
• Developmental disturbances
 • Jaws
 • Lips and palate
 • Gingiva
 • Oral mucosa
 • Tongue
 • Salivary gland
 • Tooth size
 • Tooth shape
 • Tooth structure
DEVELOPMENTAL DISTURBANCES OF JAWS

1. Agnathia
2. Micrognathia
3. Macrognathia
4. Facial Hemihypertrophy
5. Facial Hemiatrophy
AGNATHIA (OTOCEREBRALIA)

• Hypoplasia / absent mandible
• Autosomal recessive
• Unilateral missing jaw
• Ramus → ear deformities
• Etiology
 • Failure of migration of Neural crest cells into maxilary prominence in 4-5th week gestation
MICROGNATHIA

• Small jaw
• DD ➔ Abnormal positioning
• Classification
 • Congenital
 • Congenital heart disease
 • Pierre Robin syndrome
 • Maxillary micrognathia ➔ mouth breathing
 • Acquired
 • TMJ ➔ trauma, infection, ankylosis
• Congenital conditions
 • Catel-Manzke syndrome
 • Cerebrocostomandibular syndrome
 • Cornelia de Lange syndrome
 • Femoral hypoplasia - unusual facies syndrome
 • Fetal aminopterin-like syndrome
 • Miller-Dieker syndrome
 • Nager acrofacial dysostosis
 • Pierre Robin syndrome
 • Schwartz-Jampel-Aberfeld syndrome
 • van Bogaert-Hozay syndrome

• Intrauterine acquired conditions
 • Syphilis, congenital

• Chromosomal abnormalities
 • 49,XXXX syndrome
 • Chromosome 18 trisomy syndrome
 • Chromosome 8 recombinant syndrome
 • Chromosome 8 trisomy syndrome
 • Cri du chat syndrome 5p-
 • Turner's syndrome
 • Wolf-Hirschhorn syndrome

• Mendelian inherited conditions
 • CODAS (cerebral, ocular, dental, auricular, skeletal) syndrome
 • Diamond-Blackfan anemia
 • Noonan's syndrome
 • Opitz-Frias syndrome
• Autosomal dominant conditions
 • Camptomelic dysplasia
 • Cardiofaciocutaneous syndrome
 • CHARGE syndrome
 • DiGeorge's syndrome
 • Loeys-Dietz syndrome
 • Marfan syndrome
 • Micrognathia with peromelia
 • Pallister-Hall syndrome
 • Treacher Collins-Franceschetti syndrome
 • Trichorhinophalangeal syndrome type 1
 • Trichorhinophalangeal syndrome type 3
 • Wagner vitreoretinal degeneration syndrome
 • Weissenbacher-Zweymuller syndrome

• Autosomal recessive conditions
 • Bowen-Conradi syndrome
 • Carey-Fineman-Ziter syndrome
 • Cerebrohepatorenal syndrome
 • Cohen syndrome
 • Craniodiaphyseal dysplasia
 • De la Chapelle dysplasia
 • Dubowitz syndrome
 • Fetal akinesia-hypokinesia sequence
 • Hurst's microtia-absent patellae-micrognathia syndrome
 • Kyphomelic dysplasia
 • Lathosterolosis
 • Lethal congenital contracture syndrome
 • Lethal restrictive dermopathy

• X-linked inherited conditions
 • Atkin-Flaitz-Patil syndrome
 • Coffin-Lowry syndrome
 • Lujan-Fryns syndrome
 • Otopalatodigital syndrome type 2
 • Scott craniodigital syndrome

• Autoimmune conditions
 • Juvenile chronic arthritis
MACROGNATHIA

- Large jaws
 - Gigantism
 - Pagets disease
 - Acromegaly
 - Leontiasis ossea

- DD \Rightarrow prognathism
 - Increased ramus height
 - Increased mandibular body length
 - Decreased maxillary length
HEMIFACIAL HYPERTROPHY

• Hyperplasia rather than hypertropy

• Syndromes associated
 • Beckwith Wiedmann syndrome
 • Neurofibromatosis
 • McCune Albright syndrome
 • Mafucci’s syndrome

• Classification (hoyme et al 1998)
 • Complex hemihyperplasia ➔ half of body
 • Simple Hemihyperplasia ➔ single limb
 • Hemifacial hyperplasia ➔ One half of face

Prof. Shaleen Chandra
CLINICAL FEATURES

• F> M
• Macroglossia
• Premature development and eruption of teeth
 • Rowe et al
 • Crown size
 • Root size and shape
 • Rate of development

Histologically ➔ NO MUSCULAR HYPERTROPY
FACIAL HEMIATROPY

- Parry Romberg syndrome
 - Progressive atrophy of soft tissues
 - Confined to one half of face
- Etiology
 - Cerebral disturbance
 - Unregulated activity of sympathetic NS
 - Local trauma
 - Extraction of teeth
 - Infection
 - Genetic factors
CLINICAL FEATURES

- Painless cleft
- Coup de sabre (mid line of face)
- Bluish hue
 - Atropic fat
- Dental malformations
 - Incomplete root formation
 - Delayed eruption
 - Severe facial asymmetry
DEVELOPMENTAL DISTURBANCES OF LIPS AND PALATE
CONGENITAL LIP PITS AND COMMISURAL PITS

• Etiology
 • Notching of lip (early stage) \(\rightarrow\) fixation of tissue at the base of the notch
 • Failure of complete union of embryonic lateral sulci of lip
 • Commisural pits
 • Defective development of embryonic fissure

• Clinical features
 • Unilateral / bilatera
 • LL > UL
VAN DER WOUDE’S SYNDROME

- Autosomal dominant
- Deletion of chr 1q32 and alteration in chr 17p11
- Features
 - Cleft lip + palate
 - Pits of lower lip
 - Maxillary hypodontia
 - Syngnathia
 - Ankyloglosia
CHELITIS GLANDULARIS
(ACTINIC CHELITIS)

• Progressive enlargement and eversion of lower labial mucosa
• Exposure
• Erosion + ulceration + crusting
- Basophillic collagen degeneration
- Ductal ectasia, atrophy
- Hyperkeratosis and fibrosis

Prof. Shaleen Chandra
CLASSIFICATION

• Simple type
 • Multiple painless, papules with central depression

• Superficial (suppurative) type
 • Baelz disease
 • Painless indurated swelling of lip with shallow ulceration

• Deep suppurative type
 • Deep seated abscess + sinus
CHEILITIS GRANULOMATOSA

• Melkersson Rosenthal syndrome
 • Granulomatous inflammation
 • Cheilitis
 • Facial nerve palsy
 • Plicated tongue

• Etiology
 • Genetic → siblings affected
CLINICAL FEATURES

• Chelitis and ulceration
 • Episodic
 • Nontender swelling
 • Cracked fissured lips
 • Red to brown discolouration
 • Fissured tongue → 20-40% cases
 • Facial nerve palsy → 30%
HISTOPATHOLOGY

- Tuberculoid granuloma
- Chronic inflammatory cell infiltrate
- Focal noncaseating granuloma
- Epitheloid cells
- Langhans cells
• Diagnosis
 • Serum ACE test
 • Chest radiograph
 • Gallium or positron emission tomography

• Rule out sarcoidosis
Orofacial clefts

• A developmental defect characterized by the failure of fusion of facial processes.
• 6th and 7th week \rightarrow upper lip
• 8th week \rightarrow palate
 • Anterior to posterior
• Median nasal process vs maxillary process \rightarrow cleft lip
• Maxillary process \rightarrow cleft palate
ETIOLOGY

- **Heredity**
 - Single mutant gene
 - Syndromic (high risk)
 - Polygenic → low risk

The total genetic liability of an individual reaches a certain minimum level.

- Nutritional disturbances
- Physiological, emotional and traumatic stress
- Defective vascular supply
- Mechanical disturbances
- Infections
- Lack of inherent developmental force

Prof. Shaleen Chandra
CATEGORIES

• CL +- CP ➔ same etiology

• CP ➔ separate etiology
MEDIAN CLEFT FACE SYNDROME

- Hyper telorism
- Median cleft of premaxilla and palate

Etiology
- Precocious limitation of growth of primary ossification centers on either side of mid line
- Failure to fuse
TREATMENT

• Multispeciality
 • Rule of 10
 • 10 weeks
 • 10 lbs
 • 10 mg / dl Hb
 • 10000 WBC count
 • Surgery, orthodontics, speech therapy
DEVELOPMENTAL DISTURBANCES
OF THE ORAL MUCOSA
FORDYCE’S GRANULES

• Heterotrophic collections of sebaceous glands
• Usually symmetrical
• Appear at puberty
 • Not all cases (*mile*)
 • Sebaceous nevi
FOCAL EPITHELIAL HYPERPLASIA

- HPV 13, 32
- Epithelium 8-10 times thicker
DEVELOPMENTAL DISTURBANCES OF GINGIVA
HEREDITARY GINGIVAL FIBROMATOSIS

• Benign → idiopathic
• Autosomal dominant
• Nodular form
• Clinical features
 • Dense, diffuse, growth
 • Crown may be hidden
 • No inflammation
 • Normal / pale colour
RETROCUSPID PAPILLA

- Hirshfield 1933
- Soft well circumscribed
- Between
 - Free gingival margin and
 - Mucogingival junction
- Elevated mucosal tag
 - Hyper orthokeratosis
 - Highly vascular CT
 - Large stellate fibroblasts
DEVELOPMENTAL ANOMALIES OF SALIVARY GLANDS

Prof. Shaleen Chandra
ABERRANT SALIVARY GLANDS

- Location
 - Cervical region near parotid
 - Body of mandible
 - Region of brachial clefts and bronchial cleft cysts
 - Tongue

- Histology similar to the normal salivary gland
APLASIA AND HYPOPLASIA

• Along with congenital anomalies
 • Cleft palate
 • Mandibulofacial dysostosis

• Symptoms
 • Xerostomia
 • Dentinal caries
 • Melkerson Rosenthal syndrome
ACCESSORY DUCTS

• Common > 50% cases
• Superior and anterior to the normal stensons duct
• Rauch and Gorlin → 450 cases
DIVERTICULI

- Small pouches or out pocketings of the ductal system
- Recurrent acute parotitis
- Sialogram
POLYCYSTIC (DYSGENETIC) DISEASE OF PAROTID GLANDS

Least common
Developmental malformation of the duct

Prof. Shaleen Chandra
CLINICAL FEATURES

- Female (7/8)
- Recurrent painless swelling of the involved gland
- Swelling is due to the anomaly of the gland
GROSS

- Exaggerated lobularity of the subcapsular surface
- Cut surface
 - Mottled yellow ivory nodules
 - With fine spongy consistancy
HISTOLOGY

- Lobules markedly distended
- Cysts → honey combed or lattice like appearance
- Squamous cuboidal or Columnar cells have abundant eosinophilic cytoplasm
- Lumen contain eosinophilic material
- Spheroliths and microliths
• The lobular architecture is preserved, but variably sized cysts have replaced the normal lobular-ductal units.

• The cysts are formed by dilatation of the ducts and are lined by attenuated epithelial cells.
DIFFERENTIAL DIAGNOSIS

- Mucoepidermoid carcinoma
- Acinic cell adenocarcinoma
- Cystadenocarcinoma
- Differentiation
 - Wide spread involvement
 - Variable epithelial lining
 - Presence of spherolitheis and microliths
 - Lack of inflammation
DEVELOPMENTAL DISTURBANCES OF TONGUE

Prof. Shaleen Chandra
AGLOSSIA / MICROGLOSSIA SYNDROME

• Extremely rare

• Associated with
 • Anomalies of hand and feet
 • Cleft palate
 • Dental agenesis

• Microglossia
 • Lack of muscle stimulus
 • Mandible fails to grow forward
MACROGLOSSIA

• Papyrus Ebers 1550 BC
• True macroglossia
 • Congenital
 • Acquired
• pseudo macroglossia
 • Relative small jaw
 • Atonia
 • Vitamin deficiencies
 • Neoplasms displacing tongue
• Congenital
 • Muscle hypertrophy
 • Gland hyperplasia
 • Downs syndrome
 • Beckwith’s weidmann’s
 • Lymphangioma
 • Gargoylism

• Acquired
 • Hypothyroid
 • Syphilis
 • Candidiasis
 • Acromegaly
 • Amyloidosis
 • Sarcoidosis
ANKYLOGLOSSIA

• Short lingual frenum
• Speech problem

• Frenectomy
CLEFT TONGUE

• Deep groove in midline of the dorsal tongue
• Associated with
 • Orofacial digital syndrome
FISSURED TONGUE (SCROTAL TONGUE)

- Grooves of varying depth
- Melkersson Rosenthal syndrome
 - Facial palsy
 - Chelitis granulomatosa
 - Fissured tongue
- Downs syndrome

Histology: loss of filiform papillae and neutrophillic microabscesses
MEDIAN RHOMBOID GLOSSITIS

- Dorsal surface of the tongue along the midline, just anterior to the foramen cecum
- rhomboid or oval, well-demarcated shape
- red, flat or slightly multilobulated smooth, depapillated surface
- 1 to 3 cm
- usually asymptomatic
• Re-termed as POSTERIOR MIDLINE ATROPHIC CANDIDIASIS
• Atrophic stratified squamous epithelium
• Moderately fibrous CT
• Chronic candidal infection
• Always antifungal therapy prior to biopsy
BENIGN MIGRATORY GLOSSITIS

- Psorasiform mucositis
- Multiple sensitive irregularly shaped erythematous patches on the tongue
- Arcuate white rims that enlarge and change

Prof. Shaleen Chandra
• Associations with human leukocyte antigen DR5 (HLA-DR5), DRW6 (HLA-DRW6), and Cw6 (HLA-Cw6)

• Similar to psoriasis

• Histopathology
 • Neutrophillic exocytosis
 • Monro’s abscess
 • Thin long rete ridges
 • Small epithelium over the papillae
HAIRY TONGUE

- Defective desquamation of filiform papillae
- Black – brown to white

Etiology
- Hypertrophy of filiform
- Lack of mechanical stimulation
- Tobacco
- Coffee
CLINICAL FEATURES

- M > F
- 1 – 15 mm papillae
- Tickling soft palate
- Asymptomatic
 - Candida → glossopyrosis
- Halitosis
HISTOLOGY

• Mild elongated papillae
• Mild hyper keratosis
• Occasional inflammatory cells
• Accumulated debris
LINGUAL VARICES

• Varix ➔ Dilated, tortuous Vein
 • Increased hydrostatic pressure
 • Poorly supported by surrounding tissue

• Lingual Ranine veins
 • Red to purple shot like cluster of vessels
 • Ventral and lateral surfaces
• No direct association between varicosities and organic diseases

• Kleinman
 • Aging process
 • < 50 years if present
 • Premature aging
DEVELOPMENTAL DISTURBANCES INVOLVING THE TOOTH SIZE
MICRODONTIA

- Teeth smaller than normal

Types

- True generalised
 - All teeth smaller than normal
 - Pitutary dwarfism
- Relative generalized
 - Normal or slightly smaller
 - Jaws larger
- Microdontia of single tooth
 - Maxillary lateral (peg lateral)
 - Third molar

Prof. Shaleen Chandra
MACRODONTIA

- True generalised macrodontia
 - Pitutary gigantism
- Relative generalised
 - Hereditary
 - Relative larger size
- Macrodontia of single teeth
 - Hemihypertrophy
 - One side larger
DEVELOPMENTAL DISTURBANCES OF SHAPE OF TEETH

Prof. Shaleen Chandra
GEMINATION

- Attempted division of single tooth germ
- Complete or incompletely separated crowns
 - Single root and root canal
- DD
 - Fusion b/n normal teeth and supernumerary tooth
TWINNING

- Schizodontia

- Complete cleavage of tooth bud
- Extra tooth formation
 - One normal and one supernumerary
FUSION (SYNODONTIA)

- Union of two normally separated tooth germs
 - Complete / Incomplete
 - Before calcification
 - Complete fusion
 - Only roots
- Pathogenesis
 - Physical force / pressure
- Deciduous > permanent

Prof. Shaleen Chandra
CONCRESCEENCE

• Form of fusion
 • After root completion
 • United by cementum

• Cause
 • Trauma
 • Crowding

• Types
 • True → union during dev
 • Acquired → after root completion → hypercementosis

Prof. Shaleen Chandra
DILACERATION

• Angulation
 • Sharp bend or curve
 • Root / crown of tooth

• Etiology
 • Trauma
 • Deciduous injures the permanent bud

• Radiograph always needed prior to extraction
TALON’S CUSP

- Cingulum areas
 - Maxillary or mandibular incisors
 - Deep developmental grooves
 - Normal enamel and dentine
 - Normal pulp horn

- Rubinstein Taybi syndrome
 - Developmental retardation
 - Broad thumb’s and great toes
 - Incomplete decent of testes

Prof. Shaleen Chandra
DENS IN DENTE (DENSI
INVAGINATUS)

• Etiology
 • Invagination in the surface of tooth crown before calcification
 • Growth retardation
 • Trauma → localised external pressure
 • Focal growth stimulation

• Maxillary lateral incisors
 • Accentuation of lingual pit
CLASSIFICATION

• Oehler’s

• Hallet’s 1953
 • Type 1:
 • Definite cleft parallel
 • No expansion
 • Type 2
 • Extends towards pulp chamber
 • Type 3
 • Deep into pulp chamber + dialated
 • Type 4
 • Occludes coronal pulp chamber
 • Beyond CEJ

Prof. Shaleen Chandra
DENS EVAGINATUS

• Leong’s premolar
• Pathogenesis
 • Proliferation and evagination
 • Odontogenic mesenchyme
• Clinical features
 • Mongoloid ancestry
 • Accessary cusp
 • Globule of enamel between cusps
 • Extra cusp → displacement of teeth, pulp exposure
TAURODONTISM

- Sir Arthur Keith 1913
- Bull like teeth
- Body of the teeth expanded at the expense of root.
- Shaw classification
 - Hypotaurodont (mildest)
 - Mesotaurodont
 - Hypertaurodont (at apex)
CAUSES OF TAURODONTISM

- Mendelian recessive trait
- Atavistic feature
- Mutation resulting from odontoblastic deficiency
- Failure of hertwigs root sheath to invaginate at proper horizontal level
• may occur in patients with
 • amelogenesis imperfecta,
 • Down syndrome, and
 • Klinefelter syndrome
 • Due to extra X
 • Male patients with taurodontism must have chromosome analysis performed
SUPERNUMERARY ROOTS

• Common
• Single root ➔
 • mandibular bicuspid & cuspids
• Molars most commonly affected
• Significant in exodontia
DEVELOPMENTAL DISTURBANCES IN NUMBER OF TEETH

Prof. Shaleen Chandra
ANODONTIA

• True anodontia
 • Total
 • All the teeth are missing
 • May involve deciduous and permanent dentition
 • Hereditary ectodermal dysplasia
 • Partial
 • Hypo/oligodontia
 • 3^{rd} molar > max lateral > second molar
• Pseudo anodontia
 • Total extraction
ANODONTIA : ETIOLOGY

- Familial tendency
- Point mutations
- Autosomal dominant

- X-ray irradiation
 - Single quadrant teeth missing
SUPERNUMERARY TEETH

• Etiology
 • Extra tooth bud
 • Splitting of tooth bud
 • Hyperactivity theory
 • Local independent, conditioned hyperactivity of dental lamina

• Associated with
 • Cleft lip and palate
 • Cleidocranial dysplasia
 • Gardner syndrome
CLASSIFICATION: SUPERNUMERARY TEETH

- Morphology and location
 - Conical
 - Tuberculate
 - Supplemental
 - Odontome

Prof. Shaleen Chandra
TYPES

• Conical
 • This small peg-shaped conical tooth
 • Commonly found in the permanent dentition
 • It develops with root formation ahead of or at an equivalent stage to that of permanent incisors and usually presents as a mesiodens.
 • inverted into the palate
 • horizontal position.
 • result in rotation or displacement of the permanent incisor, but rarely delays eruption.
• Tuberculate
 • More than one cusp or tubercle.
 • barrel-shaped and may be invaginated
 • Root formation is delayed compared to that of the permanent incisors.
 • Often paired
 • Commonly located on the palatal aspect of the central incisors.
• Supplemental
 • Duplication of teeth in the normal series and is found at the end of a tooth series
 • The most common: permanent maxillary lateral incisor,
 • Majority supernumeraries found in the primary dentition are of the supplemental type
ODONTOMA (HOWARD)

• Category is not universally accepted
• Hamartomatous malformation rather than a neoplasm.
• Two types
 • complex composite odontoma
 • the diffuse mass of dental tissue which is totally disorganized
 • compound composite odontoma.
 • the malformation which bears some superficial anatomical similarity to a normal tooth
GARDNER’S SYNDROME

- Desmoid tumours
- Osteomas
- Polyposis of large intestine
- Sebaceous cysts
- Impacted supernumerary teeth

Cause
- Pleiotropic gene
- Autosomal dominant
- Complete penetrance

- Fader and Duncan

Prof. Shaleen Chandra
PREDECIDUOUS DENTITION

• Hornified epithelial structures
• Over the crest of ridge on the gingiva

• At birth → natal teeth
• < 28 days eruption → neonatal teeth
DEVELOPMENTAL DISTURBANCES IN STRUCTURE OF TEETH
ENAMEL HYPOPLASIA

• Incomplete or defective formation of organic enamel matrix

• Types
 • Hereditary
 • Amelogenesis imperfecta
 • Environmental
 • Nutritional deficiency (Vit A, C, D)
 • Exanthematous diseases
 • Congenital syphilis
 • Birth injury
 • Ingestion of chemicals
 • Idiopathic causes
AMELOGENESIS IMPERFECTA

- Autosomal dominant
- Autosomal recessive
- X-linked

Types
- Hypoplastic (60-73%)
- Hypocalcified (7%)
- Hypomature (20-40%)
<table>
<thead>
<tr>
<th>TYPE</th>
<th>PATTERN</th>
<th>SPECIFIC FEATURES</th>
<th>INHERITANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>Hypoplastic</td>
<td>Generalized pitted</td>
<td>Autosomal dominant</td>
</tr>
<tr>
<td>IB</td>
<td>Hypoplastic</td>
<td>Localized pitted</td>
<td>Autosomal dominant</td>
</tr>
<tr>
<td>IC</td>
<td>Hypoplastic</td>
<td>Localized pitted</td>
<td>Autosomal recessive</td>
</tr>
<tr>
<td>ID</td>
<td>Hypoplastic</td>
<td>Diffuse smooth</td>
<td>Autosomal dominant</td>
</tr>
<tr>
<td>IE</td>
<td>Hypoplastic</td>
<td>Diffuse smooth</td>
<td>X-linked dominant</td>
</tr>
<tr>
<td>IF</td>
<td>Hypoplastic</td>
<td>Diffuse rough</td>
<td>Autosomal dominant</td>
</tr>
<tr>
<td>IG</td>
<td>Hypoplastic</td>
<td>Enamel agenesis</td>
<td>Autosomal recessive</td>
</tr>
<tr>
<td>IIA</td>
<td>Hypomaturation</td>
<td>Diffuse pigmented</td>
<td>Autosomal recessive</td>
</tr>
<tr>
<td>IIB</td>
<td>Hypomaturation</td>
<td>Diffuse</td>
<td>X-linked recessive</td>
</tr>
<tr>
<td>IIC</td>
<td>Hypomaturation</td>
<td>Snow capped</td>
<td>X-linked</td>
</tr>
<tr>
<td>IID</td>
<td>Hypomaturation</td>
<td>Snow capped</td>
<td>Autosomal dominant?</td>
</tr>
<tr>
<td>IIIA</td>
<td>Hypocalcified</td>
<td>Diffuse</td>
<td>Autosomal dominant</td>
</tr>
<tr>
<td>IIIB</td>
<td>Hypocalcified</td>
<td>Diffuse</td>
<td>Autosomal recessive</td>
</tr>
<tr>
<td>IVA</td>
<td>Hypomaturation-hypoplastic</td>
<td>Taurodontism present</td>
<td>Autosomal dominant</td>
</tr>
<tr>
<td>IVB</td>
<td>Hypoplastic-hypomaturation</td>
<td>Taurodontism present</td>
<td>Autosomal dominant</td>
</tr>
</tbody>
</table>
ETIOLOGY

• Alterations in genes involved in formation and maturation of enamel

• DXS 85 at Xp22
 • Localization of amelogenin (AMELX and AMELY)

• Other genes involved
 • AMBN → ameloblastin
 • Enamelin → Multiple mutations ENAM gene mutations are associated with different autosomal inherited AI types
• Enamelysin:
 • *MMP20* gene located on chromosome 11
 • proteinase that cleaves amelogenin for processing the enamel matrix proteins
 • Enamelysin knockout mouse has a reduced enamel thickness, poorly mineralized enamel and the enamel lacks a prismatic structure.

• Kalikryn 4:
 • *KLK4* gene located on chromosome 19
 • Proteinase that is secreted predominantly during the maturation stage
 • Mutation of *KLK4* is associated with autosomal recessive hypomaturation AI that is characterized by poorly mineralized enamel.

• Tuftelin
CLINICAL FEATURES

- teeth vary in color from white opaque to yellow to brown
- all teeth are affected, smaller and pitted
- normal pulps and dentin but reduced enamel
• Few small grooves
• Pits/ fissures
• Severe deep rows of pits
• Portion of enamel missing
Hypocalcified type

Smooth type

Prof. Shaleen Chandra
HISTOLOGY

• Hypoplastic type
 • Disturbance of differentiation and viability of ameloblasts

• Hypo calcified type
 • Defects of matrix structure and mineral deposition

• Hypomaturation
 • Alterations in enamel rod and rod sheath structures
NUTRITIONAL DEFICIENCY AND EXANTHEMATOUS DISEASES

• Ameloblasts most sensitive
• Usually pitting variety
• 1 year after birth
 • Central
 • Lateral
 • Cuspid and
 • 1st molars affected
CONGENITAL SYPHILLIS

- Hutchinsons teeth
- Moons molars
- Hutchinsons triad
HYPOCALCEMIA

- Pitting variety
- Ca++ less than 6-8 mg / 100 ml
- Tetany
 - Vitamin D deficiency
 - Parathyroid deficiency
HYPOPLASIA DUE TO BIRTH INJURIES

• Permanent maxillary incisors
• Maxillary / mandibular premolar
• Mild brownish discolouration → severe pitting

• TURNER’S TEETH / TURNER’S HYPOPLASIA
DENTINOGENESIS IMPERFECTA

- Autosomal dominant
 - chromosome #4
 - Dentin sialophosphoprotein

- Affects both deciduous and permanent teeth

- Gray to yellowish brown
 - Tulip shape
<table>
<thead>
<tr>
<th>SHIELDS</th>
<th>CLINICAL PRESENTATION</th>
<th>WITKOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentineogenesis imperfecta I</td>
<td>Osteogenesis imperfecta with opalescent teeth</td>
<td>Dentineogenesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>imperfecta</td>
</tr>
<tr>
<td>Dentineogenesis imperfecta II</td>
<td>Isolated opalescent teeth</td>
<td>Hereditary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opalescent teeth</td>
</tr>
<tr>
<td>Dentineogenesis imperfecta III</td>
<td>Isolated opalescent teeth</td>
<td>Brandywine isolate</td>
</tr>
</tbody>
</table>
PRESENT CLASSIFICATION

• Dentinogenesis imperfecta 1
 • Dentinogenesis without osteogenesis imperfecta

• Dentinogenesis imperfecta 2
 • Brandywine type
DENTINOGENESIS IMPERFECTA 1

- Mutation in DSPP gene chr 4q21.3
 - Encodes dentin phosphoprotein and sialoprotein
- Blue gray or amber brown opalescent
- Enamel may split readily
DENTINOGENESIS IMPERFECTA 2

- Brandywine triracial isolate in Maryland

- Clinical features
 - Rapid loss of enamel
 - Large pulp chambers
 - Shell teeth

- Dentin sialophosphoprotein + dentinmorphogenic protein + bone sialoprotein
HISTOPATHOLOGY: DI

- Enamel normal
- Irregular tubules
- Areas of complete absence of tubules
- Physical characters
 - Reduced
 - water content
 - X-ray absorption
 - density
DENTIN DYSPLASIA

- Normal enamel
- Atypical dentin + abnormal pulp morphology
- Classification (WITKOP)
 - Type 1: Radicular dentin dysplasia (rootless teeth)
 - Type 2: Coronal dentin dysplasia
RADICULAR DENTIN

- Autosomal dominant
- Both dentition affected
- Clinically → Appears normal
- Root is stunted
- Radiographically
 - Obliteration of pulp chamber
 - PA granuloma / cyst with out obvious reason

Prof. Shaleen Chandra
- **Histology**
 - Obliterated pulp chamber
 - Tubular dentin
 - Fused denticles
 - Osteodentin
 - Appearance of lava flowing around boulders
CORONAL DENTIN

- Autosomal dominant
- Both dentition affected
- Deciduous teeth
 - Appear yellow brown to blue
 - Complete obliteration
- Permanent normal
 - Thistle tube
 - Pulp stone most characteristic

Prof. Shaleen Chandra
HISTOLOGY

• Deciduous tooth
 • Coronal dentin normal
 • Radicular dentin \rightarrow atubular dentin

• Permanent
 • Normal
 • Pulp stones
REGIONAL ODONTOGENIC DYSPLASIA

- Maxillary anterior region > mandible
- Etiology
 - Remnant viral infection
 - Vascular malformation (associated vascular nevi)
• **DELAYED ERUPTION**

 • Lack of calcification

 • Lack of density → **GHOST LIKE TEETH**
HISTOPATHOLOGY

• Pathology
 • Little amount of enamel and dentin
 • More predentin
 • MORE interglobular dentin
 • Follicular tissue around the crown is calcified
 • Enameloid conglomerates
CONCLUSION

• Developmental disorders
 • Variations in structure

• Oral manifestations may be a clue to many serious systemic unknown manifestations

• Less role of histopathology
REFERENCES

- Neville, Dam, Allen, Bouquot. Oral and maxillofacial pathology. 2nd edition
- Rajendran R and Shivapathasundaram. Shafer’s text book of oral pathology. 5th edition
- Oral pathology. Regezi.
- Disorders of dental hard tissue JJ Pindborg
- Atlas of oral lesions. Neville, Dam, Allen, Bouquot